An asymptotic expression of the Schrödinger equation

نویسندگان

  • Zhaosheng Feng
  • David Y. Gao
  • Goong Chen
چکیده

The problem of solving the time–independent Schrödinger equation for the motion of an electron of mass μ and charge −e (e > 0) in the field of two fixed Coulomb centers has been the subject of extensive studies in theoretical physics and quantum computation. In the present paper, after making a series of coordinate transformations, we apply the qualitative theory of nonlinear differential equations to the study of the Schrödinger equation under certain parametric conditions, and obtain an asymptotic formula. Mathematics Subject Classification (2000). 34E05, 34E10, 35B40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Long Wave Asymptotic Regimes for the Nonlinear-schrödinger Equation

We survey some recent results related to three long wave asymptotic regimes for the Nonlinear-Schrödinger Equation: the Euler regime corresponding to the WKB method, the linear wave regime and finally the KdV/KP-I asymptotic dynamics.

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

On the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point

In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.

متن کامل

Scattering and small data completeness for the critical nonlinear Schrödinger equation

We prove Asymptotic Completeness of one dimensional NLS with long range nonlinearities. We also prove existence and expansion of asymptotic solutions with large data at infinity.

متن کامل

On the Asymptotic Behavior of Large Radial Data for a Focusing Non-linear Schrödinger Equation

We study the asymptotic behavior of large data radial solutions to the focusing Schrödinger equation iut+∆u = −|u|2u in R, assuming globally bounded H1(R) norm (i.e. no blowup in the energy space). We show that as t → ±∞, these solutions split into the sum of three terms: a radiation term that evolves according to the linear Schrödinger equation, a smooth function localized near the origin, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007